1. 首页 > 快讯

Top 5 Python 数据可视化技术



掌握这五种高级可视化图表将使数据可视化变得容易。这些库互为补充,以最大化数据表达。和弦图 (Chord Diagram)和弦图创造性地展示了数据点之间复杂的关系。节点围绕一个圆圈排列,通过弧线连接。弧线的长度反映了连接值,其粗细表示关系的重要性。颜色对数据进行分类,使比较变得容易。广泛应用于各个领域,特别是在可视化遗传数据方面。以下是一个使用 Holoviews & Bokeh 创建显示五个国家之间贸易关系的和弦图的示例。
import holoviews as hvfrom holoviews import optsimport pandas as pdimport numpy as nphv.extension('bokeh') # Sample matrix representing the export volumes between 5 countriesexport_data = np.array([[0, 50, 30, 20, 10],[10, 0, 40, 30, 20],[20, 10, 0, 35, 25],[30, 20, 10, 0, 40],[25, 15, 30, 20, 0]]) labels = ['USA', 'China', 'Germany', 'Japan', 'India'] # Creating a pandas DataFramedf = pd.DataFrame(export_data, index=labels, columns=labels)df = df.stack().reset_index() df.columns = ['source', 'target', 'value'] # Creating a Chord objectchord = hv.Chord(df) # Styling the Chord diagramchord.opts(opts.Chord(cmap='Category20', edge_cmap='Category20',labels='source', label_text_font_size='10pt',edge_color='source', node_color='index',width=700, height=700)).select(value=(5, None)) # Display the plotchord
参考链接:https://holoviews.org/reference/elements/matplotlib/Chord.htmlhttps://github.com/moshi4/pyCirclizeSunburst ChartSunburst Chart 通过清晰展示层次数据,超越了传统的饼图和环图。它使用同心圆,每个圆代表层次中的一级。中心是根,扇形表示节点。每个扇形的大小反映了它的值,直观地理解数据的重要性。在可视化文件系统层次结构、用户导航路径、市场细分和遗传数据方面非常有用。以下是一个使用 Plotly 库创建Sunburst Chart的示例。
importplotly.expressaspximportnumpyasnp df = px.data.gapminder().query("year == 2007") fig = px.sunburst(df, path=['continent','country'],values='pop',color='lifeExp',hover_data=['iso_alpha'],color_continuous_scale='RdBu',color_continuous_midpoint=np.average(df['lifeExp'], weights=df['pop']))fig.show()
参考链接:https://plotly.com/python/sunburst-charts/
六边形分箱图 (Hexbin Plot)六边形分箱图,或称六边形分箱,对于可视化二维数据分布非常有效,特别是当数据点密集时。它将数据空间划分为六边形箱,颜色表示每个箱中的点数,清晰地表示数据分布。以下是一个使用 Python 和 Matplotlib 创建六边形分箱图的示例,展示了空气质量指数 (AQI) 与医院访问之间的相关性。
importnumpyasnpimportmatplotlib.pyplotaspltfrommplhexbinimportHexBin # Simulated datanp.random.seed(0)# Ensure reproducibilityn_points =10000x = np.random.rand(n_points) *100# Air Quality Index (AQI) range from 0 to 100y =5* np.sin(x * np.pi /50) + np.random.randn(n_points) *15# Simulated hospital visits, related to AQI but with noise # Create a new figurefig, ax = plt.subplots(figsize=(10,8)) # Use HexBin to create a hexagonal bin plothb = HexBin(ax, gridsize=20, cmap='viridis', extent=[0,100,-30,50])# Set grid size, colormap, and rangehb.hexbin(x, y, mincnt=1)# Draw the hexagonal bin plot, mincnt sets the minimum count threshold # Add title and axis labelsax.set_title('Relationship between Air Quality Index (AQI) and Hospital Visits')ax.set_xlabel('Air Quality Index (AQI)')ax.set_ylabel('Hospital Visits') # Show the figureplt.colorbar(hb.cmap, ax=ax, label='Number of Data Points')# Add color bar and set labelplt.show()

参考链接:https://matplotlib.org/stable/gallery/statistics/hexbin_demo.html桑基图 (Sankey Diagram)桑基图可视化数据流,非常适合能源、材料和财务数据。以 Matthew Henry Phineas Riall Sankey 命名,它显示了系统各阶段或部分之间的流量。节点宽度与流量数量成比例,易于理解数据规模和方向。以下是一个使用 Python 创建桑基图的示例,展示了从生产源头到小城市消费者的能量流。
import plotly.graph_objects as go labels = ["Coal","Solar","Wind","Nuclear","Residential","Industrial","Commercial"] source = [0, 1, 2, 3, 0, 1, 2, 3]target = [4, 4, 4, 4, 5, 5, 5, 5]value = [25, 10, 40, 20, 30, 15, 25, 35] # Create the Sankey diagram objectfig = go.Figure(data=[go.Sankey(node=dict(pad=15,thickness=20,line=dict(color="black", width=0.5),label=labels),link=dict(source=source,target=target,value=value))]) fig.update_layout(title_text="Energy Flow in Model City", font_size=12)fig.show()
参考链接:https://plotly.com/python/sankey-diagram/流图 (Stream Graph, 主题河流)流图类似于河流,描绘了随时间的变化。颜色区分类别,而“河流”的宽度表示每个类别的值。它直观地展示趋势和关系,易于理解数据动态。以下是一个使用 Altair 库创建流图的示例。
importaltairasaltfromvega_datasetsimportdata source = data.unemployment_across_industries.url alt.Chart(source).mark_area().encode(alt.X('yearmonth(date):T',axis=alt.Axis(format='%Y', domain=False, tickSize=0)),alt.Y('sum(count):Q', stack='center', axis=None),alt.Color('series:N',scale=alt.Scale(scheme='category20b'))).interactive()

本文采摘于网络,不代表本站立场,转载联系作者并注明出处:https://www.iotsj.com//kuaixun/3778.html

联系我们

在线咨询:点击这里给我发消息

微信号:666666