近日,英特尔与端到端Serverless(无服务器)生成式AI和增强型分析方案提供商Aible合作,为企业客户提供了创新的解决方案,助力其在不同代际的英特尔®至强®CPU上运行生成式AI与检索增强生成(RAG)用例。此次合作包含了工程优化和基准测试项目,显著增强了Aible以低成本为企业客户提供生成式AI结果的能力,并帮助开发人员在应用中部署AI。在双方的通力合作下,该可扩展、高效的AI解决方案可通过高性能硬件帮助客户迎接AI挑战。
Aible的解决方案展示了CPU如何显著提升从运行语言模型至RAG的一系列最新AI工作负载性能。基于针对英特尔处理器的优化,Aible技术采用高效、智能的“端到端无服务器”方法,仅在产生用户请求时才会进行资源消耗。例如,基于用户查询,向量数据库仅需几秒即可激活并检索相关信息,而语言模型同样只需简单启动即可处理并响应用户请求,这种按需操作的运行模式有助于企业降低总拥有成本(TCO)。
虽然在多数情况下,RAG功能需通过利用GPU和加速器的并行处理能力来实现,但Aible的无服务器技术与英特尔至强处理器相结合,可使RAG用例完全由CPU来驱动。性能数据显示,多款不同代际的英特尔至强处理器均可高效运行RAG工作负载。
Aible通过无服务器的方式使用CPU,可在多个客户之间更为安全地共享底层计算资源,从而帮助客户有效降低生成式AI项目的运营成本。这种降低成本的方式可以类比为用户仅需在使用时购买电力,而非直接租赁发电机。此外,随着生成式AI需求的增长,性能优化和节能降耗变得愈发重要。Aible所提供的基于CPU的服务,为客户提供了一种经济、高效的解决方案。
根据Aible的基准测试分析,当客户采用基于CPU的无服务器解决方案运行RAG模型时,成本节省可高达55倍。大幅降低的成本证明了Aible独家方法的有效性,同时这种无服务器的CPU采用方式也减少了通过共享服务或专用服务器构建更为昂贵的、基于GPU的基础设施需求。
此次英特尔及英特尔实验室与Aible的合作,共同优化了至强处理器上的AI工作负载。值得一提的是,通过优化Aible针对AVX-512的代码,Aible在至强处理器上实现了显著的性能及吞吐量提升,这也彰显了战略性的软件优化对于整体效率的影响。
在Aible平台的支持下,RAG模型与英特尔至强处理器的结合可推动自然语言处理(NLP)、推荐系统、决策支持系统、内容生成等应用落地。
英特尔与Aible的合作始于第四代至强处理器的发布。此后,双方针对至强处理器的AI工作负载、代码和库进行了一系列优化,并大幅提升了Aible的产品性能。
本文采摘于网络,不代表本站立场,转载联系作者并注明出处:https://www.iotsj.com//kuaixun/3366.html