在人工智能计算架构的布局中,CPU与加速芯片协同工作的模式已成为一种典型的AI部署方案。CPU扮演基础算力的提供者角色,而加速芯片则负责提升计算性能,助力算法高效执行。常见的AI加速芯片按其技术路径,可划分为GPU、FPGA和ASIC三大类别。
在这场竞争中,GPU凭借其独特的优势成为主流的AI芯片。那么,GPU是如何在众多选项中脱颖而出的呢?展望AI的未来,GPU是否仍是最优解呢?
01GPU如何制胜当下?
AI与GPU之间存在着密切的关系。
强大的并行计算能力
AI大模型指的是规模庞大的深度学习模型,它们需要处理海量的数据和进行复杂的计算。GPU的核心优势就在于其强大的并行计算能力。与传统的CPU相比,GPU能够同时处理多个任务,特别适合处理大规模数据集和复杂计算任务。在深度学习等需要大量并行计算的领域,GPU展现出了无可比拟的优势。
完善的生态系统
其次,为了便于开发者充分利用GPU的计算能力,各大厂商提供了丰富的软件库、框架和工具。例如,英伟达的CUDA平台就为开发者提供了丰富的工具和库,使得AI应用的开发和部署变得相对容易。这使得GPU在需要快速迭代和适应新算法的场景中更具竞争力。
通用性好
GPU最初是用于图形渲染的,但随着时间的推移,它的应用领域逐渐扩大。如今,GPU不仅在图形处理中发挥着核心作用,还广泛应用于深度学习、大数据分析等领域。这种通用性使得GPU能够满足多种应用需求,而ASIC和FPGA等专用芯片则局限于特定场景。
接下来看一下,相较其他类型的加速芯片,GPU需要面临哪些掣肘?
02GPU也存在它的掣肘
文首提到,常见的AI加速芯片根据其技术路径,可以划分为GPU、FPGA和ASIC三大类别。
FPGA(Field Programmable Gate Array,现场可编程门阵列),是一种半定制芯片。用户可以根据自身的需求进行重复编程。FPGA 的优点是既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点,对芯片硬件层可以灵活编译,功耗小于 CPU、GPU;缺点是硬件编程语言较难,开发门槛较高,芯片成本、价格较高。FPGA 比 GPU、CPU 更快是因为其具有定制化的结构。
ASIC(Application Specific Integrated Circuit特定用途集成电路)根据产品的需求进行特定设计和制造的集成电路,其定制程度相比于 GPU 和 FPGA 更高。ASIC 算力水平一般高于GPU、FPGA,但初始投入大,专业性强缩减了其通用性,算法一旦改变,计算能力会大幅下降,需要重新定制。
再看GPU相较于这两类芯片存在哪些劣势。
第一点,GPU的单位成本理论性能低于FPGA、ASIC。
从成本角度看,GPU、FPGA、ASIC 三种硬件从左到右,从软件到硬件,通用性逐渐降低、越专用,可定制化逐渐提高,相应的设计、开发成本逐渐提高,但是单位成本理论性能越高。举个例子,对于还在实验室阶段的经典算法或深度学习算法,使用GPU 做软件方面的探索就很合适;对于已经逐渐成为标准的技术,适合使用 FPGA 做硬件加速部署;对于已经成为标准的计算任务,则直接推出专用芯片ASIC。
第二点,GPU的运算速度要逊色于FPGA和ASIC。
FPGA、ASIC和GPU内都有大量的计算单元,因此它们的计算能力都很强。在进行神经网络运算的时候,三者的速度会比CPU快很多。但是GPU由于架构固定,硬件原生支持的指令也就固定了,而FPGA和ASIC则是可编程的,其可编程性是关键,因为它让软件与终端应用公司能够提供与其竞争对手不同的解决方案,并且能够灵活地针对自己所用的算法修改电路。
因此在很多场景的应用中,FPGA和ASIC的运算速度要大大优于GPU。
第三点,GPU的功耗远远大于FPGA和ASIC。
再看功耗。GPU的功耗,是出了名的高,单片可以达到250W,甚至450W(RTX4090)。而FPGA一般只有30~50W。这主要是因为内存读取。
再看ASIC,ASIC的性能和功耗优化是针对特定应用进行的,因此在特定任务上性能更高、功耗更低。由于设计是针对特定功能的,ASIC在执行效率和能效比方面通常优于FPGA。
第四点,GPU时延高于FPGA、ASIC。
FPGA的架构,是无批次的。每处理完成一个数据包,就能马上输出,时延更有优势。ASIC也是实现极低延迟的另一种技术。在针对特定任务进行优化后,ASIC通常能够实现比FPGA更低的延迟,因为它可以消除FPGA中可能存在的额外编程和配置开销。
既如此,为什么GPU还会成为现下AI计算的大热门呢?
在当前的市场环境下,由于各大厂商对于成本和功耗的要求尚未达到严苛的程度,加之英伟达在GPU领域的长期投入和积累,使得GPU成为了当前最适合大模型应用的硬件产品。尽管FPGA和ASIC在理论上具有潜在的优势,但它们的开发过程相对复杂,目前在实际应用中仍面临诸多挑战,难以广泛普及。因此,众多厂商纷纷选择GPU作为解决方案,这也导致了第五点潜在问题的浮现。
第五点,高端GPU的产能问题也令人焦虑。
OpenAI 首席科学家 IlyaSutskever 表示,GPU 就是新时代的比特币。在算力激增的背景下,英伟达的B系列和H系列 GPU 成为“硬通货”。
然而,虽然该系列需求十分旺盛,但考虑到HBM和CoWos供需紧张,以及台积电先进产能吃紧的情况,GPU产能实在无法跟得上需求。
如今已经有不少厂商开始另辟蹊径,在GPU之外的道路上探索并研发更为专业化、精细化的计算设备和解决方案。那么未来的AI加速芯片又将如何发展?
03科技巨头另辟蹊径
在当下这个科技发展极快、算法以月为单位更迭的大数据时代,GPU 确实适合更多人;但是一旦未来的商业需求固定下来,FPGA 甚至 ASIC 则会成为更好的底层计算设备。
各芯片龙头和科技龙头也早已开始研发生产专用于深度学习、DNN 的运算芯片或基于 FPGA 架构的半定制芯片,代表产品有 Google 研发的张量计算处理器 TPU、 Intel 旗下的 Altera Stratix V FPGA等。
Google押注定制化的 ASIC 芯片:TPU
微软:推出基于Arm架构的通用型芯片Cobalt、ASIC芯片Maia 10
Arm 近日宣布推出 Ethos-U85 NPU。
此外,OpenAI也正在探索自研AI芯片,同时开始评估潜在收购目标。
本文采摘于网络,不代表本站立场,转载联系作者并注明出处:https://www.iotsj.com//kuaixun/3153.html